miR-216b promotes cell growth and enhances chemosensitivity of colorectal cancer by suppressing PDZ-binding kinase.

نویسندگان

  • Jun Zou
  • Weihua Kuang
  • Jilong Hu
  • Huamin Rao
چکیده

PDZ-binding kinase (PBK/TOPK) acts as oncogene in various cancers and correlates with drug response. However, few studies have examined the expression and roles of PBK in colonrectal cancer (CRC). In this study, we found a significant increase in the expression of PBK in CRC tissues and cell lines. While overexpression of PBK promoted cell growth and decreased the toxicity effect of oxaliplation (OXA), targeting PBK with short hairpin RNA (shRNA) or novel PBK inhibitor HI-TOPK-032 effectively suppressed tumor growth and potentiated chemosensitivity in vitro and in vivo. Furthermore, there was a significant inverse correlation between the expressions of miR-216b and PBK. Further found that miR-216b could down-regulate PBK levels by binding to the 3' untranslated region (3'UTR) of PBK. Notably, while miR-216b decreased cell proliferation and enhanced sensitivity of CRC cells to oxaliplation, re-expression of PBK dramatically reversed these events. Collectively, our data indicated that miR-216b may function as a tumor suppressor though regulating PBK expression, which provided promising targets and possible therapeutic strategies for CRC treatment.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of the P2X7R by microRNA-216b in human breast cancer.

Breast cancer is the most common cancer in women around the world. However, the molecular mechanisms underlying breast cancer pathogenesis are only partially understood. Here, in this study, we found that P2X7R was up-regulated and miR-216b was down-regulated in breast cancer cell lines and tissues. Using bioinformatic analysis and 3'UTR luciferase reporter assay, we determined P2X7R can be dir...

متن کامل

MiR-216b suppresses colorectal cancer proliferation, migration, and invasion by targeting SRPK1

Background MiR-216b has been reported to be involved in the development of some cancers, however, the role of miR-216b in colorectal cancer (CRC) remains unclear. Purpose This study aimed to investigate the mechanism underlying miR-216b-induced CRC development. Methods We detected the expression of miR-216b in 80 cases of CRC tissues and cell lines, and further analyzed the association betw...

متن کامل

miR-203 enhances chemosensitivity to 5-fluorouracil by targeting thymidylate synthase in colorectal cancer.

MicroRNAs (miRNAs) are a conserved class of small non-coding RNAs that play important roles in diverse biological processes, including chemoresistance. However, the molecular mechanism as to how miR-203 modulates the chemosensitivity to 5-fluorouracil (5-FU) in colorectal cancer is poorly known. In the present study, we found that miR-203 was downregulated in the 5-FU-resistant cell line LoVo/5...

متن کامل

Overexpression of miR-216b sensitizes NSCLC cells to cisplatin-induced apoptosis by targeting c-Jun

Platinum-based chemotherapy is still be the standard treatment for non-small cell lung cancer (NSCLC). Recently, studies demonstrate that some kinds of microRNAs (miRNAs) are associated with chemosensitivity of NSCLC cells to platinum-based treatment. Unfortunately, cancer cells usually change their expression profile of miRNAs to form drug resistance against chemotherapy. In the present study,...

متن کامل

miR-506 inhibits cell proliferation and invasion by targeting TET family in colorectal cancer

Objective(s): Ten-eleven translocation (TET) family members have been shown to be involved in the development of many tumors. However, the biological role of the TET family and its mechanism of action in colorectal carcinogenesis and progression remain poorly understood. Materials and Methods:We measured the expression levels of TET family members in colorectal cancer (CRC) specimens, in the c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biochemical and biophysical research communications

دوره 488 2  شماره 

صفحات  -

تاریخ انتشار 2017